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Registers
• Register is a group of flip-flops/memory elements that work together to store 

data or instructions and shift a group of bits or a binary word.

• Variations:

– Register file - a few registers, each accessible by a register address. Sort of a 
small memory array.

– Shift register - temporary circuit able to shift or move the stored word either 
left or right.left or right.

• the bits stored can be moved/shifted from 1 element to another adjacent 
element.

• all the storage registers are actuated simultaneously by a single input 
clock/shift pulse.

– Buffer register - a temporary data storage circuit able to store a digital word. 

• Sometimes use special names

– accumulators, program counters, index registers, stack pointer, status 
register, etc.
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Multibit registers and latches
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Octal (8-bit) Register & Latch

• 74x273

– asynchrono

us clear

� 74x377
� clock enable
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When EN_L = H, the output is 
connected back to the input. Must 
do this to keep old value because 
the DFF does not have a “no 
change” input condition



74x670 4x4 Register File with Tri-state Outputs

• The 74x670 device contains 16 D flip-flops organized 
into four words of four flip-flops each. 

• Each register in the register file is called a word and is 
identified by a unique index or address

• Word contents read or written

– Separate Read and Write Enables (RE, WE)

670
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– Separate Read and Write Enables (RE, WE)

– Separate Read and Write Address (RA, RB, WA, 
WB) - binary encodings of one of four registers to 
be read or written

– Data Input, Q Outputs

• On a read, the selected word is multiplexed to the 
outputs. 

• On a write, data present on D4-D1 inputs are stored 
in the selected word
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Shift Registers
• Register components that shift as well as store

• For handling serial data, such as RS-232 and modem 

transmission and reception, Ethernet links, SONET, etc.

• Data moves from left to right (or from top to bottom). On 

every shift pulse, the contents of a given flip-flop are every shift pulse, the contents of a given flip-flop are 

replaced by the contents of the flip-flop to its left. The 

leftmost device receives its inputs from the rightmost. 

• Because flip-flop propagation times far exceed hold times, 

the values are passed correctly from one stage to the next
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Basic Shift Register
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(a) Circuit 
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Parallel-to-serial conversion and vice versa

• Serial to parallel

– Use a serial-in, parallel-out 

shift register

• Parallel to serial

– Use parallel-in, serial-out 

shift register
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mux



Do both
• Parallel-

in, 

parallel

-out 

shift shift 

register
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“Universal” 

shift register

74x194

S1 S0 Operation

0 0 Hold

0 1 Shift Up
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1 0 Shift Down

1 1 Parallel Load

� S1 & S0 selects which line 
is connected to D input.

� There’s 4 possible inputs to 
each DFF. 



Counters
• A circuit that produces a well-defined output pattern 

sequence

– 3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 

111, 000, ...

– 3 Bit Down-counter:  111, 110, 101, 100, 011, 010, 001, 

000, 111, ...

– Binary vs. BCD vs. Gray Code Counters

• The output pattern = state of the counter

Sm

S1

S2

• The output pattern = state of the counter

• Total number of states = modulus of counter

– Counter with m states = modulus-m counter or mod-m 

counter

• Counting sequence often shown using a state 

diagram or state transition diagram

• A counter is a "degenerate" finite state machine 

(FSM) circuit where the state is the only output -

more on FSM next week
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S5

S4

S3

State transition 
diagram of a 

counter



Asynchronous Binary Counters
• Binary counters = counters whose counting sequence corresponds 

to binary numbers

• Modulus of a binary counter is 2n, where n is # flip-flops

• Also known as ripple counter since a change in Qi flip-flop toggles 

the Qi+1 flip-flop

– Effect of counting must ripple thru the counter– Effect of counting must ripple thru the counter

– Only first FF connected to clock signal

• Rippling affects overall delay between count pulse and when the 

count stabilizes

– Worst case in n × tpd (tpd is propagation delay of each FF)

• However, ripple counters are useful as frequency dividers

– Frequency at output of Qi+1 flip-flop is half at output of Qi

– Frequency of last FF of n-stage counter is finput/2n
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A 3-bit Asynchronous Up-Counter

T Q 

Q Clock 

T Q 

Q 

T Q 

Q 

1 

Q 0 Q 1 Q 2 

(a) Circuit 
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(a) Circuit 

Clock 

Q 0 

Q 1 

Q 2 

Count 0 1 2 3 4 5 6 7 0 

(b) Timing diagram showing ripple effect

fClock/2

fClock/4

fClock/8



Synchronous Counters
• All FFs are triggered 

simultaneously (in parallel) by 

clock input pulses.

• All outputs change 

simultaneously

LSB

• Simple counters use TFF or JKFF

• Only LSB FF has its JK inputs 

permanently at HIGH level.

• JK inputs of the others FFs are 

driven by some combination of 

FF outputs.
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74x163 

MSI 4-bit 

counter
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Free-Running 4-bit ’163 Counter

• “divide-by-16” counter
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Modified Counting sequence: mod-11 Counter

• Load 0101 (5) after Count = 15

• 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 5, 

6, …

• Clear after Count = 1010 (10)

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 

…

trick to 
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trick to 
save gate 
inputs



Counting 

from 3 to 

12
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Cascading Counters
• RCO (ripple carry out) is asserted in state 15, if ENT is asserted. 

� First stage RCO 
enables second 
stage for counting

� RCO asserted soon 

8-19(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits  
are incremented

� RCO asserted soon 
after stage enters 
state 1111

� also a function of the 
T Enable

� Downstream stages 
lag in their 1111 to 
0000 transitions

� Affects Count period 
and decoding logic 



Decoding 

binary-

counter 

states
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• Glitches may or may not 

be a concern.



Ring Counter

• Is a 

circulating 

shift register

D Q 

Q 

D Q 

Q 

D Q 

Q 

Q 0 Q 1 Q n 1 –

Reset 
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Clock 



D Q 

Q 

D Q 

Q 

D Q 

Q 

Q 0 Q 1 Q n 1 –

Reset 

Johnson 

Counter

� “Twisted ring” 
counter
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Clock 



LFSR Counters
� Pseudo-random number generator
� 2n - 1 states before repeating
� Same circuits used in CRC error 

checking in Ethernet networks, etc. 
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Design of 3-bit Binary Upcounter

• This procedure can be generalized to implement ANY finite 

state machine

• Counters are a very simple way to start:

– no decisions on what state to advance to next

– current state is the output
Present Next 
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111

110

101

100

000

001

010

011

Present
State

Next 
State

C B A C+ B+ A+

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0
State Transition Diagram for 

3-bit binary upcounter
State Transition Table



Design of 3-bit Binary Upcounter
• Let’s implement with Toggle Flipflops

• What inputs must be presented to the T FFs to 

get them to change to the desired state bit?

• This is called "Remapping the Next State 

Function"
TA = 1

CB
A

C

00 01 11 10

0

1

B

1 1 1 1

1 1 1 1

CB
A

C

00 01 11 10
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Present
State

Next 
State

Flipflop
Inputs

C B A C+ B+ A+ TC TB TA

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

TB = A

TC = A• B

A 00 01 11 10

0

1

B

0 0 0 0

1 1 1 1

CB
A

C

B

00 01 11 10

0

1

0 0 0 0

0 1 1 0

K-maps for Toggle 
Inputs:



Design of 3-

bit Binary 

Upcounter
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Timing Diagram:



Design of Counter with Complex 

Count Sequence
Step 1: Derive the State Transition Diagram

Count sequence: 000, 010, 011, 101, 110
110

000

010

011101

Present Next 
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Step 2: State Transition Table

Note the Don't Care conditions

Present
State

Next 
State

C B A C+ B+ A+

0 0 0 0 1 0

0 0 1 X X X

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 X X X

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 X X X



Design of Counter with Complex Count Sequence

Step 3: Choose Flipflop Type for Implementation
Use Excitation Table to Remap Next State Functions

Present Next Toggle

Q Q+ T

0 0 0

0 1 1

1 0 1

1 1 0

8-28Remapped Next 
State Functions

Present
State

Next 
State

Toggle
Inputs

C B A C+ B+ A+ TC TB TA

0 0 0 0 1 0 0 1 0

0 0 1 X X X X X X

0 1 0 0 1 1 0 0 1

0 1 1 1 0 1 1 1 0

1 0 0 X X X X X X

1 0 1 1 1 0 0 1 1

1 1 0 0 0 0 1 1 0

1 1 1 X X X X X X

TC = A’ C  +  A C’ = A xor C

TB = A  +  B’  +  C

TA = A’ B C’  +  B’ C’



Counter 

Design 

Procedure
Resulting Logic:
5 Gates
13 Input Literals +

Flipflop connections
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Timing Waveform:



Implementation with Different Kinds of FFs

SR Flipflops

Continuing with the 000, 010, 011, 101, 110, 000, ... counter example

SR Excitation Table
Q+ = S + R’ Q

Q Q+ S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

8-30

Present
State

Next 
State

Remapped Next State

C B A C+ B+ A+ SC RC SB RB SA RA

0 0 0 0 1 0 0 X 1 0 0 X

0 0 1 X X X X X X X X X

0 1 0 0 1 1 0 X X 0 1 0

0 1 1 1 0 1 1 0 0 1 X 0

1 0 0 X X X X X X X X X

1 0 1 1 1 0 X 0 1 0 0 1

1 1 0 0 0 0 0 1 0 1 0 X

1 1 1 X X X X X X X X X



Implementation with Different Kinds of FFs

SR FFs Continued

RC = A’
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SC = A

RB = A B  +  B C = B(A+C)

SB = B’

RA = C

SA = B C’



Implementation With Different Kinds of FFs
SR FFs 
Continued

8-32

Resulting Logic Level Implementation:  
3 Gates, 11 Input Literals + Flipflop connections



Implementation with Different FF Types
JK FFs

JK Excitation Table
Q+ = JQ’ + K’Q

Present Next 

Q Q+ J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0
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Present
State

Next 
State

Remapped Next State

C B A C+ B+ A+ JC KC JB KB JA KA

0 0 0 0 1 0 0 X 1 X 0 X

0 0 1 X X X X X X X X X

0 1 0 0 1 1 0 X X 0 1 X

0 1 1 1 0 1 1 X X 1 X 0

1 0 0 X X X X X X X X X

1 0 1 1 1 0 X 0 1 X X 1

1 1 0 0 0 0 X 1 X 1 0 X

1 1 1 X X X X X X X X X



Implementation with Different FF Types

JK FFs Continued

JC = A
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KC = A’

JB = 1

KB = A + C

JA = B C’

KA = C



Implementation with Different FF Types
JK FFs Continued
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Resulting Logic Level Implementation:  
2 Gates, 10 Input Literals + Flipflop Connections



Implementation with Different FF Types
D FFs:
Simplest Design Procedure: 
No remapping needed!
DA = BC’
DB = A’C’ + B’
DC = A

Present
State

Next 
State
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Resulting Logic Level Implementation:  
3 Gates, 8 Input Literals + Flipflop connections

State State

C B A C+ B+ A+

0 0 0 0 1 0

0 0 1 X X X

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 X X X

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 X X X



Avoiding Ambiguous States
• Problem with counter with modulo < 2n

– At power-up, counter may be in ANY possible state

– Designer must guarantee that it (eventually) enters a valid state

– Especially a problem for counters that validly use a subset of states

• Self-Starting Counters

– Design counter so that even invalid states eventually transition to valid state
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Two Self-Starting State Transition Diagrams 
for the Example Counter



Self-Starting Counters

TC C+

Present 
State

Next 
State

C+ 
0 
1 

B+ 
1 
1 

A+ 
0 
1 

C 
0 
0 

B 
0 
0 

A 
0 
1 

Inputs to Toggle Flip-flops State Changes

State Transition Table
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Deriving State Transition Table from Don't Care Assignment

TB

TA

B+

A+

1 
0 
1 
0 
1 
0 
1

1 
1 
0 
1 
1 
0 
0

1 
1 
1 
1 
0 
0 
1

0 
0 
0 
1 
1 
1 
1

0 
1 
1 
0 
0 
1 
1

1 
0 
1 
0 
1 
0 
1



Avoiding Ambiguous States

T Q 

Q Clock 

T Q 

Q 

T Q 

Q 

1 
Q 0 Q 1 Q 2 

(a) A modulo-6 counter with asynchronous clear

Never use 
counters with 
asynchronous 
clear

Never use 
counters with 
asynchronous 
clear
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(a) A modulo-6 counter with asynchronous clear

Clock 

Q 0 

Q 1 

Q 2 

Count 

(b) Timing diagram

0 1 2 3 4 5 0 1 2 



Counter Implementation with Different FF Types

• T FFs well suited for straightforward binary counters

– But yielded worst gate and literal count for this example (coz it’s not 

straightforward !)

• No reason to choose SR over JK FFs: it is a proper subset of JK

– SR FFs don't really exist anyway

• JK FFs yielded lowest gate count

– Tend to yield best choice for packaged logic where gate count is key

• D FFs yield simplest design procedure

– Best literal count

– D storage devices very transistor efficient in VLSI

• Other flipflops most likely implemented using DFF in VLSI/FPGA

– Best choice where area/literal count is the key
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