
SEE 3243

Registers & Counters

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono

Week 8

� Storage Registers

� Shift Registers

� Counters

� Design of Synchronous Counters

Muhammad Nadzir Marsono
Kamal Khalil

Registers
• Register is a group of flip-flops/memory elements that work together to store

data or instructions and shift a group of bits or a binary word.

• Variations:

– Register file - a few registers, each accessible by a register address. Sort of a
small memory array.

– Shift register - temporary circuit able to shift or move the stored word either
left or right.left or right.

• the bits stored can be moved/shifted from 1 element to another adjacent
element.

• all the storage registers are actuated simultaneously by a single input
clock/shift pulse.

– Buffer register - a temporary data storage circuit able to store a digital word.

• Sometimes use special names

– accumulators, program counters, index registers, stack pointer, status
register, etc.

8-2

Multibit registers and latches

8-3

Octal (8-bit) Register & Latch

• 74x273

– asynchrono

us clear

� 74x377
� clock enable

8-4

When EN_L = H, the output is
connected back to the input. Must
do this to keep old value because
the DFF does not have a “no
change” input condition

74x670 4x4 Register File with Tri-state Outputs

• The 74x670 device contains 16 D flip-flops organized
into four words of four flip-flops each.

• Each register in the register file is called a word and is
identified by a unique index or address

• Word contents read or written

– Separate Read and Write Enables (RE, WE)

670

WE

WA
WB

RE

RA
RB

5
4

11

14
13

12

– Separate Read and Write Enables (RE, WE)

– Separate Read and Write Address (RA, RB, WA,
WB) - binary encodings of one of four registers to
be read or written

– Data Input, Q Outputs

• On a read, the selected word is multiplexed to the
outputs.

• On a write, data present on D4-D1 inputs are stored
in the selected word

8-5

Q4

D1

D4
D3
D2

Q3
Q2
Q115

1
2
3

10
9
7
6

Shift Registers
• Register components that shift as well as store

• For handling serial data, such as RS-232 and modem

transmission and reception, Ethernet links, SONET, etc.

• Data moves from left to right (or from top to bottom). On

every shift pulse, the contents of a given flip-flop are every shift pulse, the contents of a given flip-flop are

replaced by the contents of the flip-flop to its left. The

leftmost device receives its inputs from the rightmost.

• Because flip-flop propagation times far exceed hold times,

the values are passed correctly from one stage to the next

8-6

Basic Shift Register

D Q

Q Clock

D Q

Q

D Q

Q

D Q

Q

In Out

(a) Circuit

Q 1 Q 2 Q 3 Q 4

8-7

t 0
t
1

t 2
t 3
t 4
t 5
t 6

t 7

1
0

1
1
1
0
0

0

0
1

0
1
1
1
0

0

0
0

1
0
1
1
1

0

0
0

0
1
0
1
1

1

0
0

0
0
1
0
1

1

Q 1 Q 2 Q 3 Q 4 Out = In

(b) A sample sequence

Parallel-to-serial conversion and vice versa

• Serial to parallel

– Use a serial-in, parallel-out

shift register

• Parallel to serial

– Use parallel-in, serial-out

shift register

8-8

mux

Do both
• Parallel-

in,

parallel

-out

shift shift

register

8-9

“Universal”

shift register

74x194

S1 S0 Operation

0 0 Hold

0 1 Shift Up

8-10

1 0 Shift Down

1 1 Parallel Load

� S1 & S0 selects which line
is connected to D input.

� There’s 4 possible inputs to
each DFF.

Counters
• A circuit that produces a well-defined output pattern

sequence

– 3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110,

111, 000, ...

– 3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001,

000, 111, ...

– Binary vs. BCD vs. Gray Code Counters

• The output pattern = state of the counter

Sm

S1

S2

• The output pattern = state of the counter

• Total number of states = modulus of counter

– Counter with m states = modulus-m counter or mod-m

counter

• Counting sequence often shown using a state

diagram or state transition diagram

• A counter is a "degenerate" finite state machine

(FSM) circuit where the state is the only output -

more on FSM next week

8-11

S5

S4

S3

State transition
diagram of a

counter

Asynchronous Binary Counters
• Binary counters = counters whose counting sequence corresponds

to binary numbers

• Modulus of a binary counter is 2n, where n is # flip-flops

• Also known as ripple counter since a change in Qi flip-flop toggles

the Qi+1 flip-flop

– Effect of counting must ripple thru the counter– Effect of counting must ripple thru the counter

– Only first FF connected to clock signal

• Rippling affects overall delay between count pulse and when the

count stabilizes

– Worst case in n × tpd (tpd is propagation delay of each FF)

• However, ripple counters are useful as frequency dividers

– Frequency at output of Qi+1 flip-flop is half at output of Qi

– Frequency of last FF of n-stage counter is finput/2n
8-12

A 3-bit Asynchronous Up-Counter

T Q

Q Clock

T Q

Q

T Q

Q

1

Q 0 Q 1 Q 2

(a) Circuit

8-13

(a) Circuit

Clock

Q 0

Q 1

Q 2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram showing ripple effect

fClock/2

fClock/4

fClock/8

Synchronous Counters
• All FFs are triggered

simultaneously (in parallel) by

clock input pulses.

• All outputs change

simultaneously

LSB

• Simple counters use TFF or JKFF

• Only LSB FF has its JK inputs

permanently at HIGH level.

• JK inputs of the others FFs are

driven by some combination of

FF outputs.

8-14

74x163

MSI 4-bit

counter

8-15

Free-Running 4-bit ’163 Counter

• “divide-by-16” counter

8-16

Modified Counting sequence: mod-11 Counter

• Load 0101 (5) after Count = 15

• 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 5,

6, …

• Clear after Count = 1010 (10)

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3,

…

trick to

8-17

trick to
save gate
inputs

Counting

from 3 to

12

8-18

Cascading Counters
• RCO (ripple carry out) is asserted in state 15, if ENT is asserted.

� First stage RCO
enables second
stage for counting

� RCO asserted soon

8-19(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits
are incremented

� RCO asserted soon
after stage enters
state 1111

� also a function of the
T Enable

� Downstream stages
lag in their 1111 to
0000 transitions

� Affects Count period
and decoding logic

Decoding

binary-

counter

states

8-20

• Glitches may or may not

be a concern.

Ring Counter

• Is a

circulating

shift register

D Q

Q

D Q

Q

D Q

Q

Q 0 Q 1 Q n 1 –

Reset

8-21

Clock

D Q

Q

D Q

Q

D Q

Q

Q 0 Q 1 Q n 1 –

Reset

Johnson

Counter

� “Twisted ring”
counter

8-22

Clock

LFSR Counters
� Pseudo-random number generator
� 2n - 1 states before repeating
� Same circuits used in CRC error

checking in Ethernet networks, etc.

8-23

Design of 3-bit Binary Upcounter

• This procedure can be generalized to implement ANY finite

state machine

• Counters are a very simple way to start:

– no decisions on what state to advance to next

– current state is the output
Present Next

8-24

111

110

101

100

000

001

010

011

Present
State

Next
State

C B A C+ B+ A+

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0
State Transition Diagram for

3-bit binary upcounter
State Transition Table

Design of 3-bit Binary Upcounter
• Let’s implement with Toggle Flipflops

• What inputs must be presented to the T FFs to

get them to change to the desired state bit?

• This is called "Remapping the Next State

Function"
TA = 1

CB
A

C

00 01 11 10

0

1

B

1 1 1 1

1 1 1 1

CB
A

C

00 01 11 10

8-25

Present
State

Next
State

Flipflop
Inputs

C B A C+ B+ A+ TC TB TA

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

TB = A

TC = A• B

A 00 01 11 10

0

1

B

0 0 0 0

1 1 1 1

CB
A

C

B

00 01 11 10

0

1

0 0 0 0

0 1 1 0

K-maps for Toggle
Inputs:

Design of 3-

bit Binary

Upcounter

8-26

Timing Diagram:

Design of Counter with Complex

Count Sequence
Step 1: Derive the State Transition Diagram

Count sequence: 000, 010, 011, 101, 110
110

000

010

011101

Present Next

8-27

Step 2: State Transition Table

Note the Don't Care conditions

Present
State

Next
State

C B A C+ B+ A+

0 0 0 0 1 0

0 0 1 X X X

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 X X X

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 X X X

Design of Counter with Complex Count Sequence

Step 3: Choose Flipflop Type for Implementation
Use Excitation Table to Remap Next State Functions

Present Next Toggle

Q Q+ T

0 0 0

0 1 1

1 0 1

1 1 0

8-28Remapped Next
State Functions

Present
State

Next
State

Toggle
Inputs

C B A C+ B+ A+ TC TB TA

0 0 0 0 1 0 0 1 0

0 0 1 X X X X X X

0 1 0 0 1 1 0 0 1

0 1 1 1 0 1 1 1 0

1 0 0 X X X X X X

1 0 1 1 1 0 0 1 1

1 1 0 0 0 0 1 1 0

1 1 1 X X X X X X

TC = A’ C + A C’ = A xor C

TB = A + B’ + C

TA = A’ B C’ + B’ C’

Counter

Design

Procedure
Resulting Logic:
5 Gates
13 Input Literals +

Flipflop connections

8-29

Timing Waveform:

Implementation with Different Kinds of FFs

SR Flipflops

Continuing with the 000, 010, 011, 101, 110, 000, ... counter example

SR Excitation Table
Q+ = S + R’ Q

Q Q+ S R

0 0 0 X

0 1 1 0

1 0 0 1

1 1 X 0

8-30

Present
State

Next
State

Remapped Next State

C B A C+ B+ A+ SC RC SB RB SA RA

0 0 0 0 1 0 0 X 1 0 0 X

0 0 1 X X X X X X X X X

0 1 0 0 1 1 0 X X 0 1 0

0 1 1 1 0 1 1 0 0 1 X 0

1 0 0 X X X X X X X X X

1 0 1 1 1 0 X 0 1 0 0 1

1 1 0 0 0 0 0 1 0 1 0 X

1 1 1 X X X X X X X X X

Implementation with Different Kinds of FFs

SR FFs Continued

RC = A’

8-31

SC = A

RB = A B + B C = B(A+C)

SB = B’

RA = C

SA = B C’

Implementation With Different Kinds of FFs
SR FFs
Continued

8-32

Resulting Logic Level Implementation:
3 Gates, 11 Input Literals + Flipflop connections

Implementation with Different FF Types
JK FFs

JK Excitation Table
Q+ = JQ’ + K’Q

Present Next

Q Q+ J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

8-33

Present
State

Next
State

Remapped Next State

C B A C+ B+ A+ JC KC JB KB JA KA

0 0 0 0 1 0 0 X 1 X 0 X

0 0 1 X X X X X X X X X

0 1 0 0 1 1 0 X X 0 1 X

0 1 1 1 0 1 1 X X 1 X 0

1 0 0 X X X X X X X X X

1 0 1 1 1 0 X 0 1 X X 1

1 1 0 0 0 0 X 1 X 1 0 X

1 1 1 X X X X X X X X X

Implementation with Different FF Types

JK FFs Continued

JC = A

8-34

KC = A’

JB = 1

KB = A + C

JA = B C’

KA = C

Implementation with Different FF Types
JK FFs Continued

8-35

Resulting Logic Level Implementation:
2 Gates, 10 Input Literals + Flipflop Connections

Implementation with Different FF Types
D FFs:
Simplest Design Procedure:
No remapping needed!
DA = BC’
DB = A’C’ + B’
DC = A

Present
State

Next
State

8-36

Resulting Logic Level Implementation:
3 Gates, 8 Input Literals + Flipflop connections

State State

C B A C+ B+ A+

0 0 0 0 1 0

0 0 1 X X X

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 X X X

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 X X X

Avoiding Ambiguous States
• Problem with counter with modulo < 2n

– At power-up, counter may be in ANY possible state

– Designer must guarantee that it (eventually) enters a valid state

– Especially a problem for counters that validly use a subset of states

• Self-Starting Counters

– Design counter so that even invalid states eventually transition to valid state

8-37

Two Self-Starting State Transition Diagrams
for the Example Counter

Self-Starting Counters

TC C+

Present
State

Next
State

C+
0
1

B+
1
1

A+
0
1

C
0
0

B
0
0

A
0
1

Inputs to Toggle Flip-flops State Changes

State Transition Table

8-38
Deriving State Transition Table from Don't Care Assignment

TB

TA

B+

A+

1
0
1
0
1
0
1

1
1
0
1
1
0
0

1
1
1
1
0
0
1

0
0
0
1
1
1
1

0
1
1
0
0
1
1

1
0
1
0
1
0
1

Avoiding Ambiguous States

T Q

Q Clock

T Q

Q

T Q

Q

1
Q 0 Q 1 Q 2

(a) A modulo-6 counter with asynchronous clear

Never use
counters with
asynchronous
clear

Never use
counters with
asynchronous
clear

8-39

(a) A modulo-6 counter with asynchronous clear

Clock

Q 0

Q 1

Q 2

Count

(b) Timing diagram

0 1 2 3 4 5 0 1 2

Counter Implementation with Different FF Types

• T FFs well suited for straightforward binary counters

– But yielded worst gate and literal count for this example (coz it’s not

straightforward !)

• No reason to choose SR over JK FFs: it is a proper subset of JK

– SR FFs don't really exist anyway

• JK FFs yielded lowest gate count

– Tend to yield best choice for packaged logic where gate count is key

• D FFs yield simplest design procedure

– Best literal count

– D storage devices very transistor efficient in VLSI

• Other flipflops most likely implemented using DFF in VLSI/FPGA

– Best choice where area/literal count is the key

8-40

