
Algorithm Efficiency

Analysis

SCJ2013 Data Structure & Algorithms

Nor Bahiah Hj Ahmad & Dayang

Norhayati A. Jawawi

Objectives

At the end of the class, students are expected

to be able to do the following:

• Know how to measure algorithm efficiency.

• Know the meaning of big O notation.

Introduction

Algorithm analysis:-

to study the efficiency of algorithms when the

input size grow, based on the number of

steps, the amount of computer time and

space.

Analysis of algorithms

• Is a major field that provides tools for evaluating the

efficiency of different solutions

What is an efficient algorithm?

• Faster is better (Time)

– How do you measure time? Wall clock? Computer clock?

• Less space demanding is better (Space)

– But if you need to get data out of main memory ittakes

time

Analysis of algorithms

• Algorithm analysis should be independent of :

– Specific implementations and coding tricks

(programming language, control statements –

Pascal, C, C++, Java)

– Specific Computers (hw chip, OS, clock speed)

– Particular set of data (string, int, float)

But size of data should matter

Analysis of algorithms

• Three possible states in algorithm analysis:

- best case

- average case

- worst case

• The worst case is always considered � the
maximum boundary for execution time or memory
space for any input size.

• Execution time for the worst case � complexity
time

Worse Case/Best Case/Average Case

For a particular problem size, we may be interested in:

• Worst-case efficiency: Longest running time for any input of
size n

– A determination of the maximum amount of time that an algorithm
requires to solve problems of size n

• Best-case efficiency: Shortest running time for any input of
size n

– A determination of the minimum amount of time that an algorithm
requires to solve problems of size n

• Average-case efficiency: Average running time for all inputs
of size n

– A determination of the average amount of time that an algorithm
requires to solve problems of size n

Examples of the 3 cases

Algorithm: sequential search of n elements

• Best-case: Find the target in the first place the

element set. C(n) = 1

• Worst-case: Find or cannot find the target

after compare every element with the target

value. C(n) = n

• Average-case: Depends on the probability (p)

that the target will be found. C(n) n/2

Big O Notation

• Complexity time can be represented by

Big ‘O’ notation.

• Big ‘O’ notation is denoted as

O(f(n))
O – “on the order of”

f(n)- algorithm’s growth-rate function that
may consist of 1, logxn, n, n logxn,
n2, …

• An algorithm requires time proportional to
f(n). O(f(n)) means order of f(n).

Big O Notation

• Notation that used to show the complexity

time of algorithms.

Notation Execution time / number of step

O(1) Constant function, independent of input size, n

Example: Finding the first element of a list.

O(logxn) Problem complexity increases slowly as the problem size
increases.

Squaring the problem size only doubles the time.

Charac.: Solve a problem by splitting into constant fractions
of the problem (e.g., throw away ½ at each step)

O(n) Problem complexity increases linearly with the size of the
input, n

Example: counting the elements in a list.

Big O Notation

O(n logxn) Log-linear increase - Problem complexity increases a little

faster than n

Characteristic: Divide problem into subproblems that are

solved the same way

Example: mergesort

O(n2) Quadratic increase.

Problem complexity increases fairly fast, but still manageable

Characteristic: Two nested loops of size n

O(n3) Cubic increase.

Practical for small input size, n.

O(2n) Exponential increase - Increase too rapidly to be practical

Problem complexity increases very fast

Generally unmanageable for any meaningful n

Example: Find all subsets of a set of n elements

Big O Notation

• Example of algorithm (only for cout operation):

notation code
O(1)

Constant

int counter = 1;

cout << "Arahan cout kali ke " << counter <<

"\n";

O(logxn)

Logarithmic

int counter = 1; int i = 0;

for (i = x; i <= n; i = i * x) { // x must be

> than 1

cout << "Arahan cout kali ke " <<

counter << "\n";

counter++;

}

Order of increasing complexity

Order of growth for some common function:

• O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

Notasi n = 8 n = 16 n = 32

O(log2n) 3 4 5

O(n) 8 16 32

O(n log2n) 24 64 160

O(n2) 64 256 1024

O(n3) 512 4096 32768

O(2n) 256 65536 4294967296

Order-of-Magnitude Analysis and

Big O Notation

2n n3 n2
n * log2n

n

log2n

g
ro

w
th

-r
a
te

 f
u
n
c
ti
o
n
 v

a
lu

e

n

1

Big O Notation

O(n)

Linear

int counter = 1; int i = 0;

for (i = 1; i <= n; i++) {

cout << "Arahan cout kali ke " << counter << "\n";

counter++;

}

O(n
logxn)

Linear
Logarith
mic

int counter = 1; int i = 0; int j = 1;

for (i = x; i <= n; i = i * x) { // x must be > than 1

while (j <= n) {

cout << "Arahan cout kali ke " << counter << "\n";

counter++; j++;

}

}

• Example of algorithm for common function:

Big O Notation

O(n2)

Quadratic

int counter = 1;

int i = 0;

int j = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

cout << "Arahan cout kali ke " <<

counter << "\n";

counter++;

}

}

• Example of algorithm for common function:

Big O Notation

O(n3)

Cubic

int counter = 1;

int i = 0;

int j = 0;

int k = 0;

for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {

for (j = 1; j <= n; j++) {

cout << "Arahan cout kali ke " <<

counter << "\n";

counter++;

}

}

}

• Example of algorithm for common function:

Big O Notation

O(2n)
Exponential

int counter = 1;

int i = 1;

int j = 1;

while (i <= n) {

j = j * 2;

i++;

}

for (i = 1; i <= j; i++) {

cout << "Arahan cout kali ke " << counter

<< "\n";

counter++;

}

• Example of algorithm for common function:

Determine the complexity time of

algorithm

Can be determined

• theoretically – by calculation

• practically – by experiment or

implementation

Determine the complexity time of

algorithm - practically

– Implement the algorithms in any

programming language and run the

programs

– Depend on the compiler, computer, data

input and programming style.

Determine the complexity time of

algorithm - theoretically

• The complexity time is related to the number

of steps /operations.

• Complexity time can be determined by

1. Count the number of steps and then find the class

of complexity.

Or

2. Find the complexity time for each steps and then

count the total.

Determine the number of steps

• The following algorithm is categorized as O(n).

int counter = 1;

int i = 0;

for (i = 1; i <= n; i++) {

cout << "Arahan cout kali ke “;

cout << counter << "\n";

counter++;

}

Determine the number of steps

Num statements

1 int counter = 1;

2 int i = 0;

3 i = 1

4 i <= n

5 i++

6 cout << "Arahan cout kali ke " << counter << "\n"

7 counter++

Determine the number of steps

• Statement 3, 4 & 5 are the loop control and

can be assumed as one statement.

Num Statements

1 int counter = 1;

2 int i = 0;

3 i = 1; i <= n; i++

6 cout << "Arahan cout kali ke " << counter << "\n"

7 counter++

Determine the number of steps-

summation series

• statement 3, 6 & 7 are in the repetition

structure.

• It can be expressed by summation series

∑∑∑∑ = f(1) + f(2) + . . . + f(n) = n

i = 1

n

f(i)

Where

f(i) – statement executed in the loop

Determine the number of steps-

summation series

• example:- if n = 5, i = 1

The statement that represented by f(i) will be repeated

5 times

∑∑∑∑ = f(1) + f(2) + f(3) + f(4) + f(5) = 5

i = 1

5

f(i)

Determine the number of steps-

summation series

• example:- if n = 5, i = 3

The statement that represented by f(i) will be repeated

3 time

∑∑∑∑ = f(3) + f(4) + f(5) = 3

i = 3

5

f(i)

Determine the number of steps-

summation series

• Example: if n = 1, i = 1

∑∑∑∑ = f(1) = 1

i = 1

1

f(i)

The statement that represented by f(i) will be executed

only once.

statements Number of steps

int counter = 1;

int i = 0;

i = 1; i= n; i++

cout << "Arahan cout kali ke " << counter <<

"\n"

counter++

∑ = 1
i=1

1
f(i)

∑ = 1
i=1

1
f(i)

∑ = n
i=1

n
f(i)

∑ .
i=1

n
f(i) ∑ = n . 1 = n

i=1

1
f(i)

∑ .
i=1

n
f(i) ∑ = n . 1 = n

i=1

1
f(i)

Determine the number of steps

Determine the number of steps

• Total steps:

1 + 1 + n + n + n = 2 + 3n

Consider the largest factor.

• Algorithm complexity can be categorized as

O(n)

Determine the number of steps

Determine the number of steps

Determine the number of steps

Determine the number of steps

- exercise

Count the number of steps and find the Big ‘O’
notation for the following algorithm
int counter = 1;

int i = 0;

int j = 1;

for (i = 3; i <= n; i = i * 3) {

while (j <= n) {

cout << "Arahan cout kali ke " << counter << "\n";

counter++;

j++;

}

}

statements Number of steps

int counter = 1;

int i = 0;

int j = 1;

i = 3; i <= n; i = i * 3

j <= n

∑ = 1
i=1

1
f(i)

∑ = 1
i=1

1
f(i)

∑ = 1
i=1

1
f(i)

∑ = f(3) + f(9) + f(27) + … + f(n) = log3n
i=3

n
f(i)

∑ .
i=3

n
f(i) ∑ = log3n . n

j=1

n
f(i)

Determine the number of steps

- solution

cout << "Arahan cout kali ke "

<< counter

<< "\n";

counter++;

j++;

∑ .
i=3

n
f(i) ∑ . = log3n . n . 1

j=1

n
f(i) ∑

i=1

1
f(i)

∑ .
i=3

n
f(i) ∑ . = log3n . n . 1

j=1

n
f(i) ∑

i=1

1
f(i)

∑ .
i=3

n
f(i) ∑ . = log3n . n . 1

j=1

n
f(i) ∑

i=1

1
f(i)

Determine the number of steps

- solution

=> 1 + 1+ 1 + log3n + log3n . n + log3n . n . 1 + log3n . n . 1 + log3n . n . 1

=> 3 + log3n + log3n . n + log3n . n + log3n . n + log3n . n

=> 3 + log3n + 4n log3n

Total steps:

Determine the number of steps

- solution

3 + log3n + 4n log3n

Determine the number of steps :

solution

• Consider the largest factor

(4n log3n)

• and remove the coefficient

(n log3n)
• In asymptotic classification, the base of the log can be

omitted as shown in this formula:
logan = logbn / logba

• Thus, log3n = log2n / log23 = log2n / 1.58…

• Remove the coefficient 1/1.58..

• So we get the complexity time of the algorithm is
O(n log2n)

Determine the number of steps

Conclusion and Summary

• Algorithm analysis to study the efficiency of
algorithms when the input size grow, based on
the number of steps, the amount of computer
time and space

• Can be done using Big O notation by using growth
of function.

• Order of growth for some common function:

O(1) < O(logxn) < O(n) < O(n log2n) < O(n2) < O(n3) < O(2n)

• Three possible states in algorithm analysis best
case, average case and worst case.

12/4/2011 40

References

1. Frank M. Carano, Janet J Prichard. “Data

Abstraction and problem solving with C++”

Walls and Mirrors. 5th edition (2007).

Addision Wesley.

2. Nor Bahiah et al. Struktur data & algoritma

menggunakan C++. Penerbit UTM, 2005.

12/4/2011 41

