

SCJ2013 Data Structure & Algorithms

Algorithm Efficiency Analysis

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Inspiring Creative and Innovative Minds

ocw.utm.my

Objectives

At the end of the class, students are expected to be able to do the following:

- Know how to measure algorithm efficiency.
- Know the meaning of big O notation.

Introduction

Algorithm analysis:-

to study the efficiency of algorithms when the input size grow, based on the number of steps, the amount of computer time and space.

Analysis of algorithms

• Is a major field that provides tools for evaluating the efficiency of different solutions

What is an efficient algorithm?

- Faster is better (Time)
 - How do you measure time? Wall clock? Computer clock?
- Less space demanding is better (Space)
 - But if you need to get data out of main memory ittakes time

Analysis of algorithms

- Algorithm analysis should be independent of :
 - Specific implementations and coding tricks
 (programming language, control statements –
 Pascal, C, C++, Java)
 - Specific Computers (hw chip, OS, clock speed)
 - Particular set of data (string, int, float)

But size of data should matter

Analysis of algorithms

- Three possible states in algorithm analysis:
 - best case
 - average case
 - worst case
- The worst case is always considered → the maximum boundary for execution time or memory space for any input size.
- Execution time for the worst case → complexity time

Worse Case/Best Case/Average Case

For a particular problem size, we may be interested in:

- Worst-case efficiency: Longest running time for *any* input of size *n*
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n
- Best-case efficiency: Shortest running time for any input of size n
 - A determination of the minimum amount of time that an algorithm requires to solve problems of size n
- Average-case efficiency: Average running time for *all* inputs of size *n*
 - A determination of the average amount of time that an algorithm requires to solve problems of size n

Examples of the 3 cases

Algorithm: sequential search of *n* elements

- Best-case: Find the target in the first place the element set. C(n) = 1
- Worst-case: Find or cannot find the target after compare every element with the target value. C(n) = n
- Average-case: Depends on the probability (p) that the target will be found. C(n) n/2

- Complexity time can be represented by Big 'O' notation.
- Big 'O' notation is denoted as

O(f(n))

O – "on the order of"

f(n)- algorithm's growth-rate function that may consist of 1, $log_x n$, n, $n \ log_x n$, n^2 , ...

 An algorithm requires time proportional to f(n). O(f(n)) means order of f(n).

• Notation that used to show the complexity time of algorithms.

Notation	Execution time / number of step
O(1)	Constant function, independent of input size, n
	Example: Finding the first element of a list.
O(log _x n)	Problem complexity increases slowly as the problem size increases.
	Squaring the problem size only doubles the time.
	Charac.: Solve a problem by splitting into constant fractions of the problem (e.g., throw away $\frac{1}{2}$ at each step)
<i>O(n)</i>	Problem complexity increases linearly with the size of the input, n
	Example: counting the elements in a list.

O(n log _x n)	Log-linear increase - Problem complexity increases a little faster than n	
	Characteristic: Divide problem into subproblems that are solved the same way	
	Example: mergesort	
$O(n^2)$	Quadratic increase.	
	Problem complexity increases fairly fast, but still manageable	
	Characteristic: Two nested loops of size n	
$O(n^3)$	Cubic increase.	
	Practical for small input size, n.	
$O(2^n)$	Exponential increase - Increase too rapidly to be practical	
	Problem complexity increases very fast	
	Generally unmanageable for any meaningful n	
	Example: Find all subsets of a set of n elements	

• Example of algorithm (only for **cout** operation):

notation	code
O(1)	int counter = 1;
Constant	cout << "Arahan cout kali ke " << counter << "\n";
$O(\log_{\mathbf{x}}n)$	<pre>int counter = 1; int i = 0;</pre>
Logarithmic	<pre>for (i = x; i <= n; i = i * x) { // x must be > than 1</pre>
	<pre>cout << "Arahan cout kali ke " << counter << "\n";</pre>
	counter++;
	}

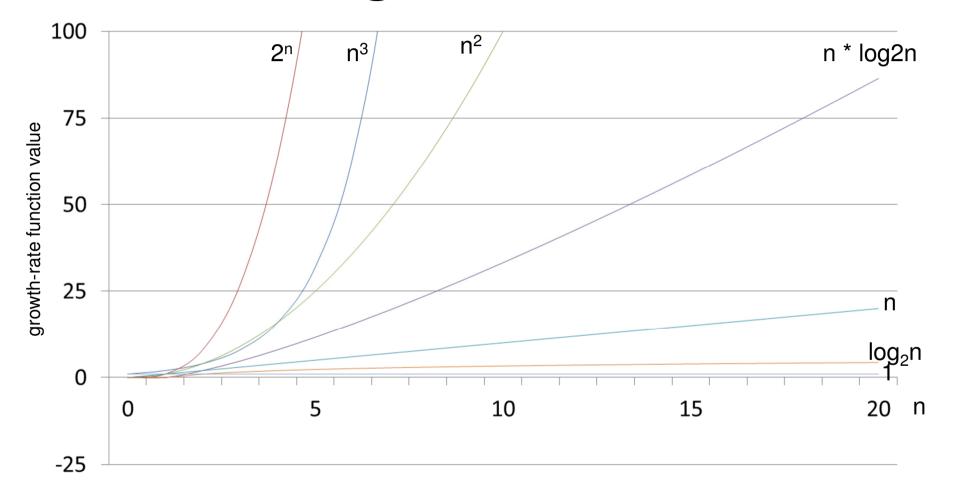
Order of increasing complexity

Order of growth for some common function:

• $O(1) < O(\log_{x} n) < O(n) < O(n \log_{2} n) < O(n^{2}) < O(n^{3}) < O(2^{n})$

Notasi	n = 8	n = 16	n = 32
O(log₂n)	3	4	5
<i>O(n)</i>	8	16	32
O(n log₂n)	24	64	160
$O(n^2)$	64	256	1024
<i>O</i> (<i>n</i> ³)	512	4096	32768
<i>O</i> (2 ^{<i>n</i>})	256	65536	4294967296

Order-of-Magnitude Analysis and Big O Notation



O(n)	<pre>int counter = 1; int i = 0;</pre>
Linear	<pre>for (i = 1; i <= n; i++) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; }</pre>
O(n log _x n) Linear Logarith mic	<pre>int counter = 1; int i = 0; int j = 1; for (i = x; i <= n; i = i * x) { // x must be > than 1 while (j <= n) { cout << "Arahan cout kali ke " << counter << "\n"; counter++; j++; } }</pre>

$O(n^2)$	<pre>int counter = 1;</pre>
Quadratic	int i = 0;
	int j = 0;
	for (i = 1; i <= n; i++) {
	for (j = 1; j <= n; j++) {
	cout << "Arahan cout kali ke " <<
	counter << "\n";
	counter++;
	}
	}


```
O(n<sup>3</sup>)
                int counter = 1;
                int i = 0;
Cubic
                int j = 0;
                int k = 0;
                for (i = 1; i <= n; i++) {</pre>
                       for (j = 1; j <= n; j++) {</pre>
                              for (j = 1; j <= n; j++) {</pre>
                                 cout << "Arahan cout kali ke " <<
                counter << "\n";
                                            counter++;
                                   }
                         }
```



```
int counter = 1;
O(2^{n})
               int i = 1;
Exponential
               int j = 1;
               while (i \le n) {
                       j = j * 2;
                       i++;
               }
               for (i = 1; i <= j; i++) {</pre>
                       cout << "Arahan cout kali ke " << counter
               << "\n";
                       counter++;
```

Determine the complexity time of algorithm

Can be determined

- theoretically by calculation
- practically by experiment or implementation

Determine the complexity time of algorithm - practically

- Implement the algorithms in any programming language and run the programs
- Depend on the compiler, computer, data input and programming style.

Determine the complexity time of algorithm - theoretically

- The complexity time is related to the number of steps /operations.
- Complexity time can be determined by
 - 1. Count the number of steps and then find the class of complexity.

Or

2. Find the complexity time for each steps and then count the total.

• The following algorithm is categorized as O(n).

```
int counter = 1;
int i = 0;
for (i = 1; i <= n; i++) {
   cout << "Arahan cout kali ke ";
   cout << counter << "\n";
   counter++;
}
```


Num	statements
1	int counter = 1;
2	int i = 0;
3	i = 1
4	i <= n
5	İ++
6	cout << "Arahan cout kali ke " << counter << "\n"
7	counter++

• Statement 3, 4 & 5 are the loop control and can be assumed as one statement.

Num	Statements
1	int counter = 1;
2	int i = 0;
3	i = 1; i <= n; i++
6	cout << "Arahan cout kali ke " << counter << "\n"
7	counter++

- statement 3, 6 & 7 are in the repetition structure.
- It can be expressed by summation series

$$\sum_{i=1}^{n} f(i) = f(1) + f(2) + \dots + f(n) = n$$

Where

f(i) – statement executed in the loop

• example:- if n = 5, i = 1

$$\sum_{i=1}^{5} f(i) = f(1) + f(2) + f(3) + f(4) + f(5) = 5$$

The statement that represented by f(i) will be repeated 5 times

• example:- if n = 5, i = 3

$$\sum_{i=3}^{5} f(i) = f(3) + f(4) + f(5) = 3$$

The statement that represented by f(i) will be repeated 3 time

• Example: if n = 1, i = 1

$$\sum_{i=1}^{l} f(i) = f(1) = 1$$

The statement that represented by f(i) will be executed only once.

statements	Number of steps
int counter = 1;	$\sum_{i=1}^{l} f(i) = 1$
int i = 0;	$\sum_{i=1}^{l} f(i) = 1$
i = 1; i= n; i++	$\sum_{i=1}^{n} f(i) = n$
cout << "Arahan cout kali ke " << counter << "\n"	$\sum_{i=1}^{n} f(i) \cdot \sum_{i=1}^{l} f(i) = n \cdot 1 = n$
counter++	$\sum_{i=1}^{n} f(i) = \prod_{i=1}^{l} f(i) = n = 1$

• Total steps:

1 + 1 + n + n + n = 2 + 3n

Consider the largest factor.

 Algorithm complexity can be categorized as O(n)

OPENCOURSEWARE

Algorithm	Number of Steps
void sample4 ()	0
{	0
for (int a=2; a<=n; a++)	n-2+1=n-1
cout << " Contoh kira langkah ";	(n-1).1=n-1
}	0
Total Steps	2(n-1)

 \Box Total steps =2(*n*-1), Complexity Time = O (*n*)

Algorithm	Number of steps
void sample5 ()	0
{	0
for (int a-1; a<-n-1; a++)	n-1-1+1-n-1
cout << " Contoh kira langkah ";	(n-1).1=n-1
}	0
Total steps	2(n-1)

ocw.utm.my

Inspiring Creative and innovative minus

Continued.....

Algorithm	Number of Steps
void sample7 ()	0
{	0
for (int a=1; a<=n; a++)	n-1+1=n
for (int b=1; b<=a; b++)	n.(n+1)/2
cout << " Contoh kira langkah ";	n.(n+1)/2
}	0
Total steps	2n+n ²

□Total steps =2*n*+*n*² Complexity Time= *O* (*n*²)

Determine the number of steps Continued...

$$\sum_{a=1}^{n} \sum_{b=1}^{n} = a=1 = n(1+2+3+4+...+n)$$
$$= \frac{n(n+1)}{2}$$
$$= \frac{n^{2}+n}{2}$$

□To get n.(n+1)/2, we used summation series as shown above:

Inspiring Creative and Innovative Minds

Count the number of steps and find the Big 'O' notation for the following algorithm

```
int counter = 1;
int i = 0;
int j = 1;
for (i = 3; i <= n; i = i * 3) {
  while (j <= n) {
    cout << "Arahan cout kali ke " << counter << "\n";
    counter++;
    j++;
    }
}
```


Determine the number of steps - solution

statements	Number of steps
int counter = 1;	$\sum_{i=1}^{l} f(i) = 1$
int i = 0;	$\sum_{i=1}^{l} f(i) = 1$
int j = 1;	$\sum_{i=1}^{l} f(i) = 1$
i = 3; i <= n; i = i * 3	$\sum_{i=3}^{n} f(i) = f(3) + f(9) + f(27) + \dots + f(n) = \log_{3} n$
j <= n	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(i) = \log_{3} n \cdot n$

Determine the number of steps - solution

cout << "Arahan cout kali ke " << counter << "\n";	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(i) \cdot \sum_{i=1}^{l} f(i) = \log_{3} n \cdot n \cdot 1$
counter++;	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(i) \cdot \sum_{i=1}^{1} f(i) = \log_{3} n \cdot n \cdot 1$
j++;	$\sum_{i=3}^{n} f(i) \cdot \sum_{j=1}^{n} f(i) \cdot \sum_{i=1}^{l} f(i) = \log_{3} n \cdot n \cdot 1$

Determine the number of steps - solution

Total steps:

 $=>1 + 1 + 1 + \log_{3}n + \log_{3}n \cdot n + \log_{3}n \cdot n \cdot 1 + \log_{3}n \cdot n \cdot 1 + \log_{3}n \cdot n \cdot 1$

 $=> 3 + \log_3 n + \log_3 n \cdot n$

 $=> 3 + \log_3 n + 4n \log_3 n$

Determine the number of steps : solution

$3 + \log_3 n + 4n \log_3 n$

• Consider the largest factor

$(4n \log_3 n)$

• and remove the coefficient

$(n \log_3 n)$

• In asymptotic classification, the base of the log can be omitted as shown in this formula:

 $\log_a n = \log_b n / \log_b a$

- Thus, $\log_3 n = \log_2 n / \log_2 3 = \log_2 n / 1.58...$
- Remove the coefficient 1/1.58..
- So we get the complexity time of the algorithm is O(n log₂n)

Algorithm	No. of Steps
void sample8 ()	0
{	0
int n, x, i=1;	1
while (i<=n)	—→ n
{	0
X++;	n.1 = n
x+ <u>+;</u> i++;	n.1 = n
}	0
}	0
Number of Steps	1 + 3n

Consider the largest factor : 3n

and remove the coefficient : O(n)

Inspiring Creati

Conclusion and Summary

- Algorithm analysis to study the efficiency of algorithms when the input size grow, based on the number of steps, the amount of computer time and space
- Can be done using Big O notation by using growth of function.
- Order of growth for some common function:

 $O(1) < O(\log_{x} n) < O(n) < O(n \log_{2} n) < O(n^{2}) < O(n^{3}) < O(2^{n})$

 Three possible states in algorithm analysis best case, average case and worst case.

References

- Frank M. Carano, Janet J Prichard. "Data Abstraction and problem solving with C++" Walls and Mirrors. 5th edition (2007). Addision Wesley.
- 2. Nor Bahiah et al. *Struktur data & algoritma menggunakan C++*. *Penerbit UTM, 2005.*