

SCJ2013 Data Structure & Algorithms

Algorithm Efficiency Analysis

Nor Bahiah Hj Ahmad & Dayang Norhayati A. Jawawi

Inspiring Creative and Innovative Minds

ocw.utm.my

Objectives

At the end of the class, students are expected to be able to do the following:

- Know how to measure algorithm efficiency.
- Know the meaning of big O notation.

Introduction

Algorithm analysis:-

to study the efficiency of algorithms when the input size grow, based on the number of steps, the amount of computer time and space.

Analysis of algorithms

• Is a major field that provides tools for evaluating the efficiency of different solutions

What is an efficient algorithm?

- Faster is better (Time)
	- $-$ How do you measure time? Wall clock? Computer clock?
- \bullet Less space demanding is better (Space)
	- – $-$ But if you need to get data out of main memory ittakes time

Analysis of algorithms

- Algorithm analysis should be independent of :
	- –- Specific implementations and coding tricks (programming language, control statements –Pascal, C, C++, Java)
	- –— Specific Computers (hw chip, OS, clock speed)
	- –Particular set of data (string, int, float)

But size of data should matter

Analysis of algorithms

- Three possible states in algorithm analysis:
	- best case
	- average case
	- worst case
- The worst case is always considered \rightarrow the maximum boundary for execution time or n maximum boundary for execution time or memory space for any input size.
- Execution time for the worst case \rightarrow complexity time time

Worse Case/Best Case/Average Case

For a particular problem size, we may be interested in:

- •Worst-case efficiency: Longest running time for *any* input of size *n*
	- A determination of the maximum amount of time that an algorithm requires to solve problems of size *n*
- \bullet Best-case efficiency: Shortest running time for any input of size *n*
	- A determination of the minimum amount of time that an algorithm requires to solve problems of size *n*
- Average-case efficiency: Average running time for all inputs of size *n*
	- A determination of the average amount of time that an algorithm requires to solve problems of size *n*

Examples of the 3 cases

Algorithm: sequential search of *n* elements

- Best-case: Find the target in the first place the element set. $C(n) = 1$
- Worst-case: Find or cannot find the target after compare every element with the target value. $C(n) = n$
- Average-case: Depends on the probability (p) that the target will be found. $C(n)$ n/2

- Complexity time can be represented by Big 'O' notation.
- Big 'O' notation is denoted as

$O(f(n))$

O – "on the order of"

 $f(n)$ - algorithm's growth-rate function that may consist of **1, logxn, n, n logxn, ⁿ2, …**

• An algorithm requires time proportional to $f(n)$. O($f(n)$) means order of $f(n)$.

• Notation that used to show the complexity time of algorithms.

• Example of algorithm (only for **cout** operation):

Order of increasing complexity

Order of growth for some common function:

• $O(1) < O(\log_\chi n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < O(2^n)$ n)

ocw.utm.my Order-of-Magnitude Analysis and Big O Notation


```
O(2n) Exponential
              int counter = 1;
              int i = 1;int \t{ } = 1;while (i <= n) {
j = j * 2;i++;}for (i = 1; i <= j; i++) {
cout << "Arahan cout kali ke " << counter 
              << "\n";counter++;}
```
ocw.utm.my Determine the complexity time of algorithm

Can be determined

- theoretically by calculation
- practically by experiment or implementation

Determine the complexity time of algorithm - practically

- $\mathcal{L}_{\mathcal{A}}$, the state of the state $\mathcal{L}_{\mathcal{A}}$ -Implement the algorithms in any programming language and run the programs
- –Depend on the compiler, computer, data input and programming style.

ocw.utm.n Determine the complexity time of algorithm - theoretically

- The complexity time is related to the number of steps /operations.
- Complexity time can be determined by
	- 1. Count the number of steps and then find the class of complexity.

Or

2. Find the complexity time for each steps and then count the total.

• The following algorithm is categorized as O(n).

```
int counter = 1;
int i = 0;
for (i = 1; i <= n; i++) {cout << "Arahan cout kali ke ";
   cout << counter << "\n";
   counter++;}
```


• Statement 3, 4 & 5 are the loop control and can be assumed as one statement.

- statement 3, 6 & 7 are in the repetition structure.
- It can be expressed by summation series

$$
\sum_{i=1}^{n} f(i) = f(1) + f(2) + \dots + f(n) = n
$$

Where

 $f(i)$ – statement executed in the loop

• example:- if $n = 5$, $i = 1$

$$
\sum_{i=1}^{5} f(i) = f(1) + f(2) + f(3) + f(4) + f(5) = 5
$$

The statement that represented by *f(i)* will be repeated 5 times

• example:- if $n = 5$, i = 3

$$
\sum_{i=3}^{5} f(i) = f(3) + f(4) + f(5) = 3
$$

The statement that represented by $f(i)$ will be repeated 3 time

• Example: if $n = 1$, $i = 1$

$$
\sum_{i=1}^{I} f(i) = f(1) = I
$$

The statement that represented by $f(i)$ will be executed only once.

• Total steps:

 $1 + 1 + n + n + n = 2 + 3n$

Consider the largest factor.

• Algorithm complexity can be categorized as $O(n)$

OPENCOURSEWARE

 \Box Total steps = 2(n-1), Complexity Time = \bigcirc (n)

ocw.utm.my

Inspiring

Continued......

 \Box Total steps = $2n+n^2$ Complexity Time= $O (n^2)$

Determine the number of stepsContinued...

$$
\sum_{\alpha=1}^{n} \sum_{b=1}^{n} =
$$

= n(1 + 2 + 3 + 4 + ... + n)
= n(n+1)

$$
= \frac{n^{2} + n}{2}
$$

 \Box To get $n.(n+1)/2,$ we used summation series as shown above:

Inspiring Creative and Innovative Minds

ocw.utm.my

Count the number of steps and find the Big 'O' notation for the following algorithm

```
int counter = 1;
int i = 0;
int j = 1;for (i = 3; i \le n; i = i * 3)while (j <= n) {
     cout << "Arahan cout kali ke " << counter << "\n";
    counter++;j++;}}
```


Determine the number of steps solution

Determine the number of steps solution

Determine the number of steps solution

Total steps:

=> 1 + 1+ 1 + log**3**n + log**3**ⁿ . n + log**3**ⁿ . n . 1 + log**3**ⁿ . n . 1 + log**3**ⁿ . n . 1

=> 3 + log**3**n + log**3**ⁿ . n + log**3**ⁿ . n + log**3**ⁿ . n + log**3**ⁿ . n

=> 3 + log**3**n + 4n log**3**ⁿ

Determine the number of steps : solution

3 + log3n + 4n log3ⁿ

 \bullet Consider the largest factor

$(4n log₃n)$

•and remove the coefficient

$(n log₃n)$

 \bullet In asymptotic classification, the base of the log can be omitted as shown in this formula:

 $log_a n = log_b n / log_b a$

- Thus, $\log_3 n = \log_2 n / \log_2 3 = \log_2 n / 1.58...$
- Remove the coefficient 1/1.58..
- \bullet So we get the complexity time of the algorithm is $O(n \log_2 n)$

Consider the largest factor: 3n

and remove the coefficient : $O(n)$

Inspiring Creati

Conclusion and Summary

- Algorithm analysis to study the efficiency of algorithms when the input size grow, based on the number of steps, the amount of computer time and space
- Can be done using Big O notation by using growth of function.
- Order of growth for some common function:

 $O(1) < O(\log_\textsf{x} n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < O(2^n)$ n)

• Three possible states in algorithm analysis best case, average case and worst case.

References

- 1. Frank M. Carano, Janet J Prichard. "Data Abstraction and problem solving with C++" Walls and Mirrors. 5th edition (2007). Addision Wesley.
- 2. Nor Bahiah et al. Struktur data & algoritmamenggunakan C++. Penerbit UTM, 2005.