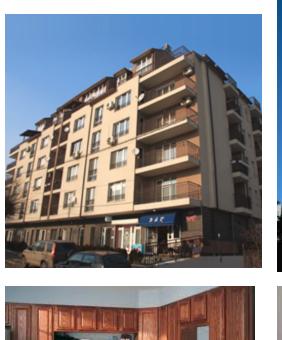


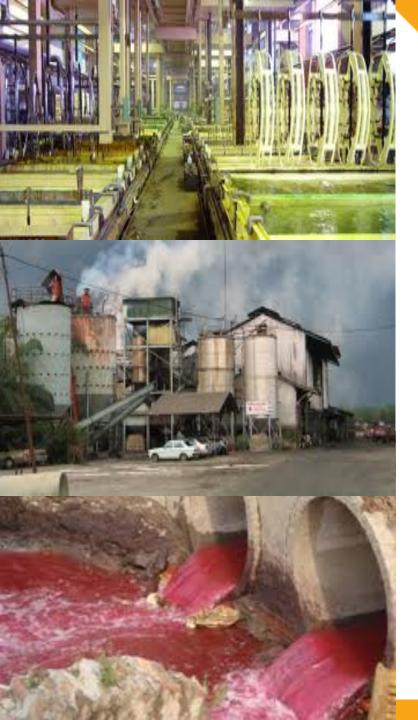
Wastewater Characteristics

Inspiring Creative and Innovative Minds


Types of Wastewater

Domestic Industrial

Domestic



Residential, shop houses, offices, schools etc.

Toilets, sinks and bathrooms

Industrial

Manufacturing processes

Domestic Wastewater

Inspiring Creative and Innovative Minds

Characteristics Physical Chemical Biological

Physical Characteristics

Inspiring Creative and Innovative Minds

Colour

Depends mainly on the wastewater constituent

Odour

Not significant if aerobic

Anaerobic releases hydrogen sulphide (rotten egg)

Temperature

High due to the microbial activities

Solids

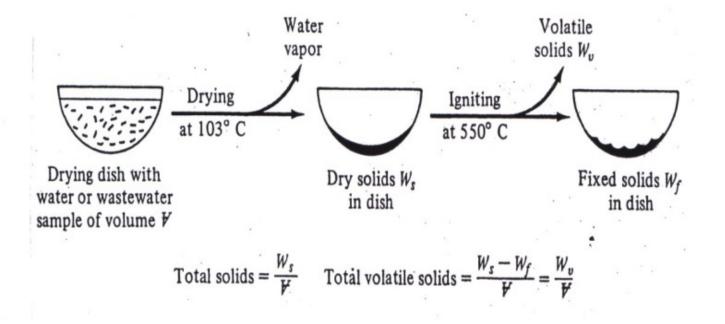
Suspended Solids (SS) + Dissolved Solids (DS) = Total Solids (TS)

Solids

Suspended Solids (SS) + Dissolved Solids (DS) = Total Solids (TS)

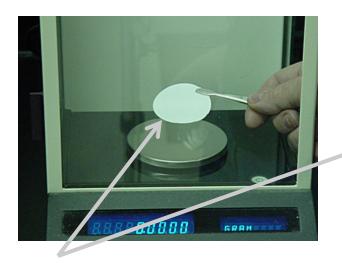
Clay, sand, human waste, plant fibres

Measurement of Total Solids



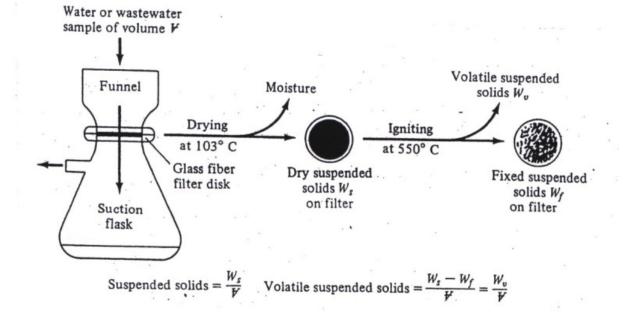
Measurement of Total Solids

Inspiring Creative and Innovative Minds


Measurement of Suspended Solids

Inspiring Creative and Innovative Minds

Filter paper



Funnel

Flask

Total Solids (TS) = Total Dissolved Solids (TDS) + Total Suspended Solids (TSS)

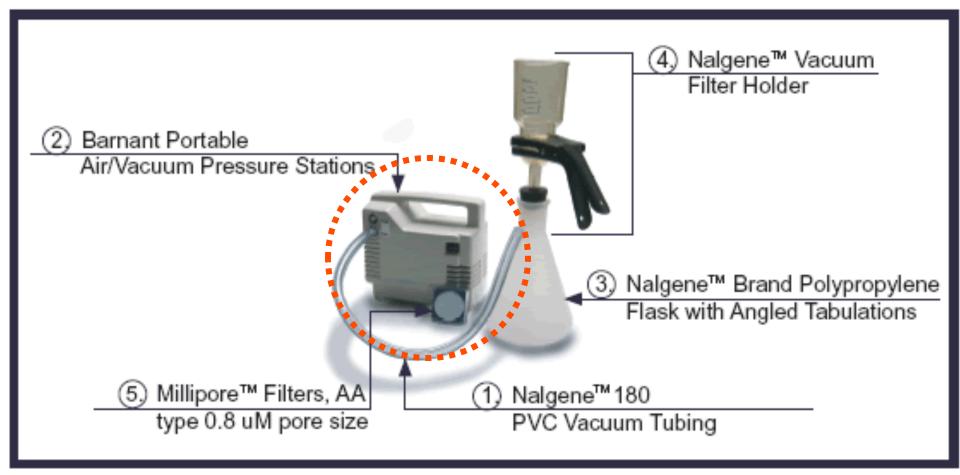
Inspiring Creative and Innovative Minds

Total Solids (TS) = Total Fixed Solids (TFS) + Total Volatile Solids (TVS)

Inspiring Creative and Innovative Minds

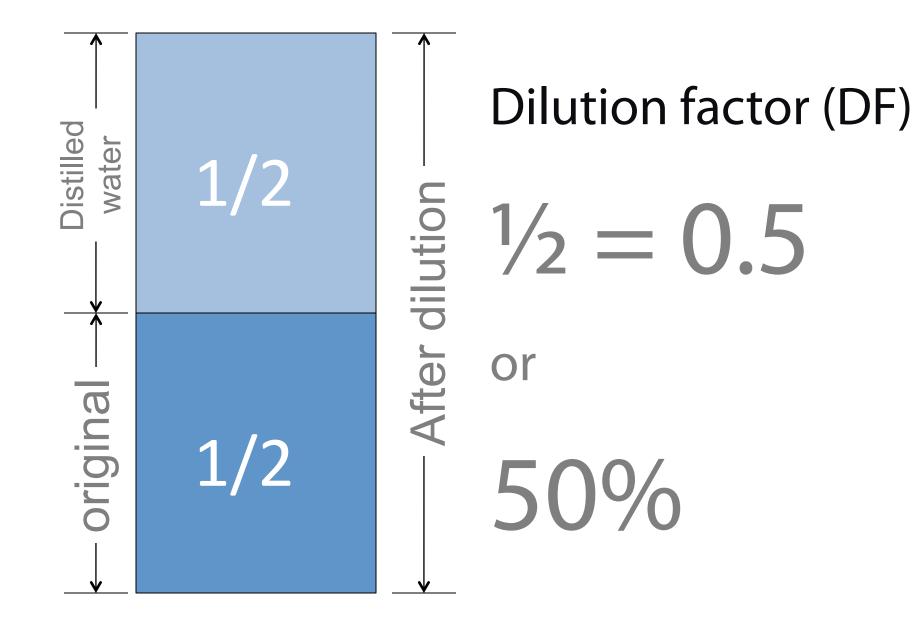
Total Suspended Solids (TSS) = Fixed Suspended Solids (FSS) + Volatile Suspended Solids (VSS)

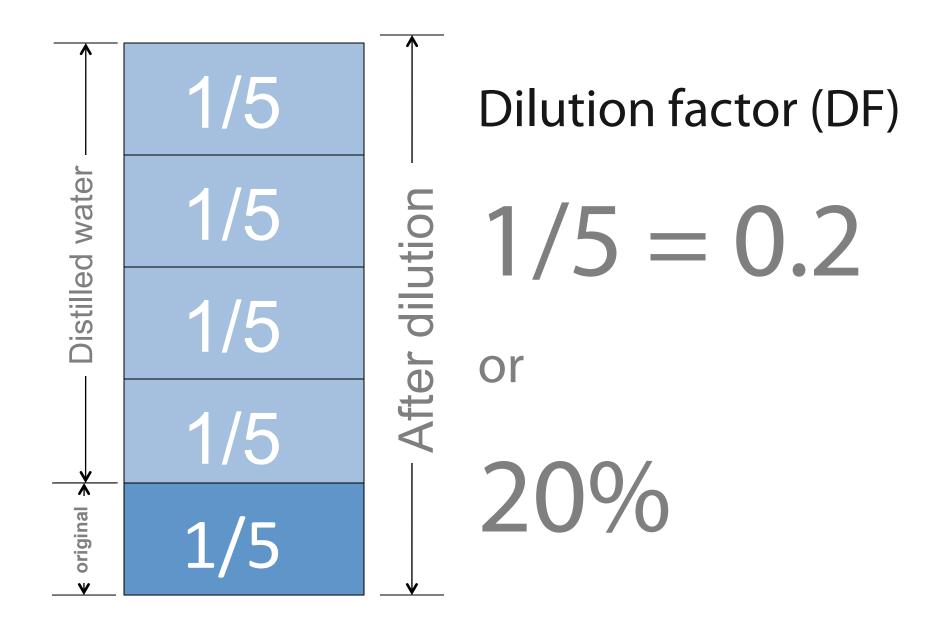
Inspiring Creative and Innovative Minds



Highly concentrated!

Dilution


Sample concentration too high Above measuring limit of equipment



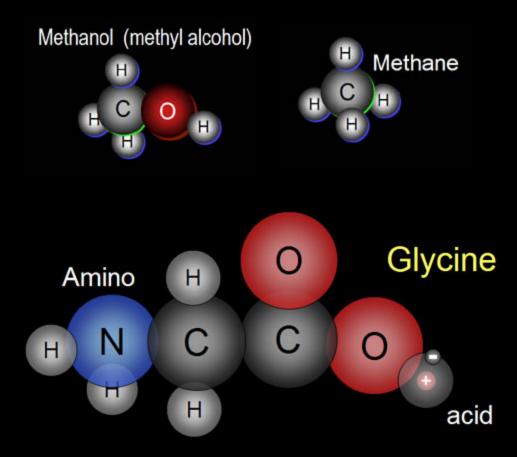
Use distilled water as dilution solution

$DF = \frac{actual \text{ vol. sample}}{actual \text{ vol. sample} + \text{ vol. dilution water}}$

Actual conc. = <u>measured concentration</u> <u>dilution factor</u>

Based on dissolved oxygen requirements, which type give more energy to the bacteria and which type give the least?

Based on energy and carbon source requirements, how to you categorize algae?



Chemical Characteristics

Organic compounds Inorganic compounds

Organic Compounds

Contain carbon (C) in combination with one or more elements

Properties

Usually combustible

Have lower melting and boiling points

Less soluble in water

High molecular weight

Most serve as source of food for microorganisms

Sources Natural Synthetic

Natural

Synthetic

Effects

Deplete dissolved oxygen in water Destroy aquatic life Damage ecosystem Can cause health hazards

Classification

Biodegradable organics
Non-biodegradable organics

Biodegradable

Easily degraded by micro-organisms Food for micro-organisms e.g. carbohydrate, starch, fat, protein,

alcohol, human and animal waste

Non-biodegradable

Difficult to biodegrade Longer time to biodegrade Toxic to micro-organisms e.g. plastic, PVC, pesticide, cellulose, some industrial wastewater

Measurements of Organics

Biological oxygen demand (BOD) Biochemical oxygen demand (BOD) Chemical oxygen demand (COD) **Domestic wastewater** BOD: 100 to 400 mg/L $COD \cong 2$ to 3 of BOD value

Biochemical Oxygen Demand (BOD)

Definition

Quantity of oxygen utilised by micro-organisms to biologically degrade the organic matter in the water under aerobic condition

microorganisms Organics $\rightarrow CO_2 + H_2O + new cells$

Important parameters in water pollution control

Estimate oxygen needed for biological processes

Main Apparatus

DO meter

BOD bottle (300 mL)

Procedures – BOD₅ at 20°C

- 1. Place water sample in BOD bottle
- 2. If needed, add dilution water (known quantity)

Dilution water is prepared by adding phosphate buffer (pH 7.2), magnesium sulphate, calcium chloride and ferric chloride into distilled water. Aerate the dilution water to saturate it with oxygen before use.

- 3. Measure DO in the bottle after 15 minutes (DO_i)
- Close the bottle and place in incubator for 5 days, at 20°C
- 5. After 5 days, measure DO in the bottle (DO_t)

Calculation

$BOD_t = (DO_i - DO_t) / DF$

BOD _t	=	Biochemical Oxygen Demand, mg/L
DO _i	=	initial DO of the sample about 15 min. after
		preparation, mg/L
DOt	=	final DO of the sample after incubation for t
		days, mg/L
DF	=	dilution factor
	=	sample volume / (sample volume + volume of

dilution water)

Why Dilution in BOD Test

BOD test is invalid if DO_t value near zero Final $DO \ge 1 \text{ mg/L}$

BOD Dilution Factor

Volume of sample (mL)	Range of BOD value (mg/L)	Volume of sample (mL)	Range of BOD value (mg/L <u>)</u>
0.02	30,000-105,000	5.00	120-420
0.05	12,000-42,000	10.00	60-210
0.10	6,000-21,000	20.00	30-105
0.20	3,000-10,500	50.00	12-42
0.50	1,200-4,200	100.00	6-21
1.00	600-2,100	300.00	0-7
2.00	300-1,050		

ocw.utm.my

What happen in BOD bottle?

BOD Bottle = Biological Reactor

Biological Process

organic matter

 $CO_2 + H_2O$

Inspiring Creative and Innovative Minds

Biological Process

organic matter

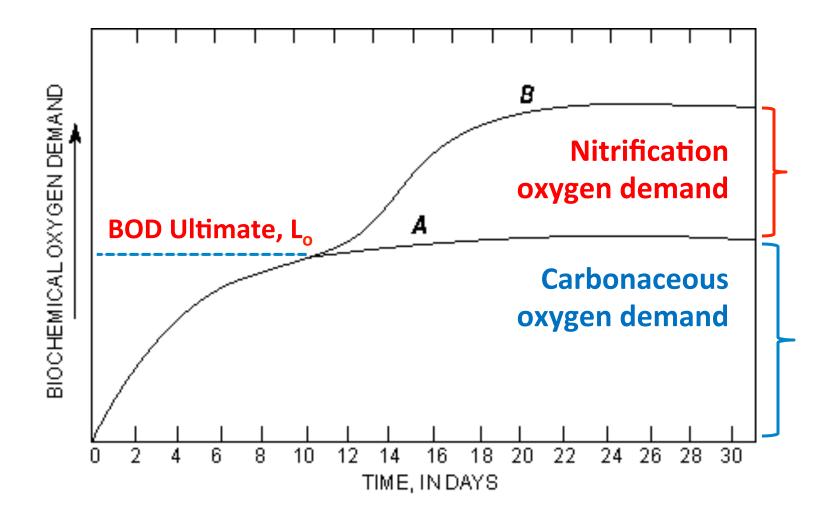
new cells

Inspiring Creative and Innovative Minds

ocw.utm.my

microorganisms Organic matter $\rightarrow CO_2 + H_2O +$ new cells Heterotrophic bacteria "Carbonaceous Oxygen Demand"

 O_{2} \downarrow microorganisms $NH_{3} - N \rightarrow Nitrate-N$ (nitrification)


Autotrophic bacteria "Nitrification Oxygen Demand"

ocw.utm.my

BOD Curve

The ultimate BOD (L_o): Maximum BOD exerted by the waste

The carbonaceous oxygen demand curve can be expressed mathematically as

$$BOD_{t} = L_{o} (1 - 10^{-Kt})$$

 $BOD_{t} = L_{o} (1 - e^{-kt})$

where

- $BOD_t = BOD$ at time t, mg/L
- $L_o = ultimate BOD, mg/L$
 - t = time, days
 - K, \mathbf{k} = reaction rate constant, day⁻¹

BOD Reaction Rate Constant, K

Speed of the reaction Biodegradability of the compound

Simple compounds (eg. sugars and starches) easily degraded by microorganisms - High K value

More complex (eg. phenols and cellulose) difficult to degrade

- Low K values

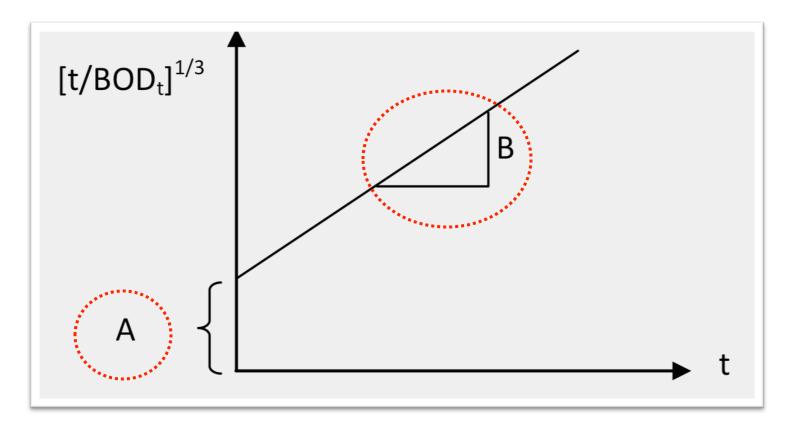
Water Type, K per day (base 10) Tap water, 0.04 Surface water, 0.04 – 0.1 Raw sewage, 0.15 – 0.30 Well-treated sewage, 0.05 – 0.10

ocw.utm.my

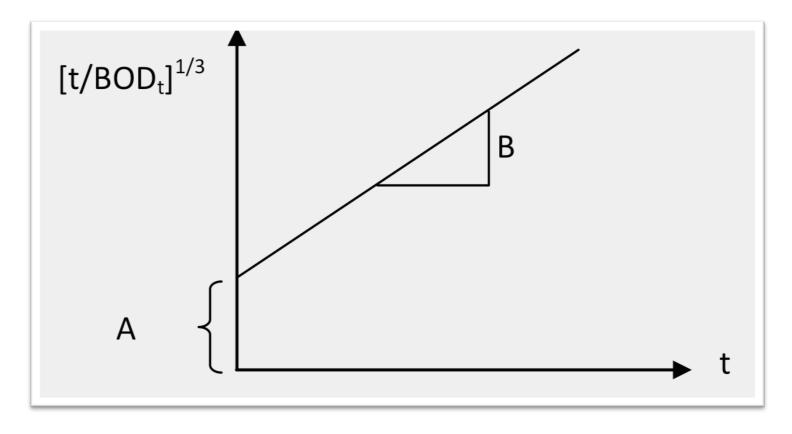
Determination of BOD Rate Constant, K

1. Conduct a series of BOD test

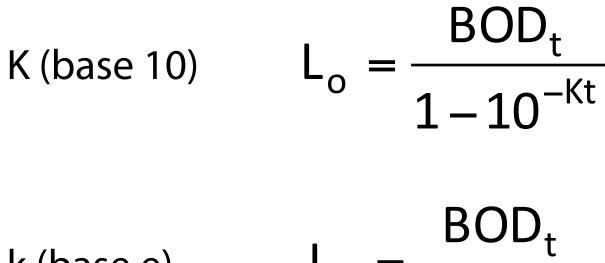
t (day)	BOD _t (mg/L)	
1	W	
2	X	
3	Υ	
4	Z	

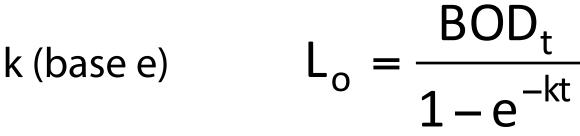

2. From the experiment results of BOD for various values of t, calculate [time/BOD_t]^{1/3} for each day

t (day)	BOD _t (mg/L)	[time/BOD _t] ^{1/3}
1	W	[1/W] ^{1/3}
2	Х	[2/X] ^{1/3}
3	Y	[3/Y] ^{1/3}
4	Z	[4/Z] ^{1/3}


3. Plot $[t/BOD_t]^{1/3}$ versus t

4. Determine the intercept (A) and slope (B) from the plot.





K = 2.61 (B/A)

K = k/2.3

Effect of Temperature (T)

Increases as the T increases $K_T = K_{20} \times 1.047$ (T-20)

ocw.utm.my

Chemical Oxygen Demand (COD)

The quantity of equivalent oxygen needed to chemically oxidize the organic compound in sample, converted to carbon dioxide and water

BOD: The quantity of oxygen utilised by a mixed population of micro-organisms to biologically degrade the organic matter in the wastewater under aerobic condition

 COD: The quantity of equivalent oxygen needed to chemically oxidize the organic compound in sample, converted to carbon dioxide and water

Traditional COD Test App

titrat

COD flask reflux

Test Procedures

- 1. Add measured quantities of potassium dichromate, sulphuric acid reagent containing silver sulphate, and a measured volume of sample into a flask.
- 2. The mixture is **refluxed** (vaporized and condensed) for **two hours**. The oxidation of organic matter converts dichromate to trivalent chromium,

Organic matter $+ Cr_2O_7^{2-} + H^+ \rightarrow CO_2 + H_2O + 2Cr^{3+}$

- 3. The mixture is titrated with ferrous ammonium sulphate (FAS) to measure the excess dichromate remaining in sample.
- 4. A blank sample of distilled water is carried through the same COD testing procedure as the wastewater sample.

COD calculation $COD = \frac{8000(a-b)}{V} \times Normality of FAS$

where:

- COD = chemical oxygen demand, mg/L
 - a = amount of FAS added to blank, mL
 - b = amount of FAS added to sample, mL
 - V = volume of sample, mL

8000 = multiplier to express COD in mg/L of oxygen

HACH Apparatus

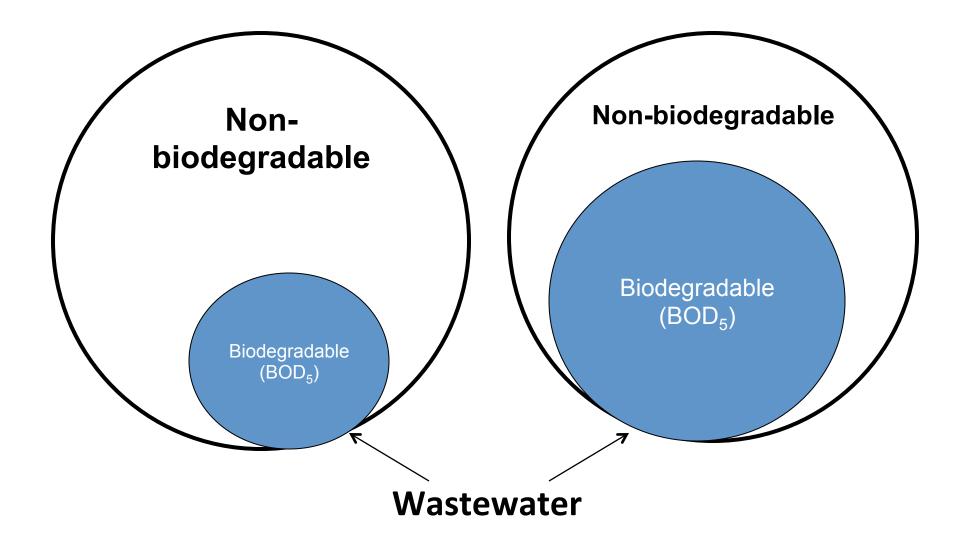
Solution of sample + dichromate

HACH Reflux

HACH Spectrophotometer

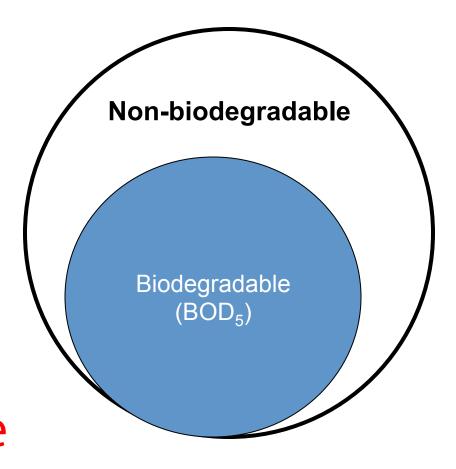
Inspiring Creative and Innovative Minds

ocw.utm.my



BOD: The quantity of oxygen utilised by a mixed population of micro-organisms to biologically degrade the organic matter in the wastewater under aerobic condition

COD: The quantity of equivalent oxygen needed to chemically oxidize the organic compound in sample, converted to carbon dioxide and water



BOD: Biodegradable

COD: Biodegradable + Non-biodegradable

Relation between COD and BOD

COD > BOD

 $COD/BOD_5 \approx 2 \text{ to } 3$, biodegradable organic

COD >> BOD₅, non-biodegradable organic

ocw.utm.my

Inorganic Compounds

Dissociate in water into electrically charged atoms (ions)

$NaCI \rightarrow Na^+ + CI^-$

 $NH_3 + H_2O \rightarrow NH_4^+ + HO^-$

Sources

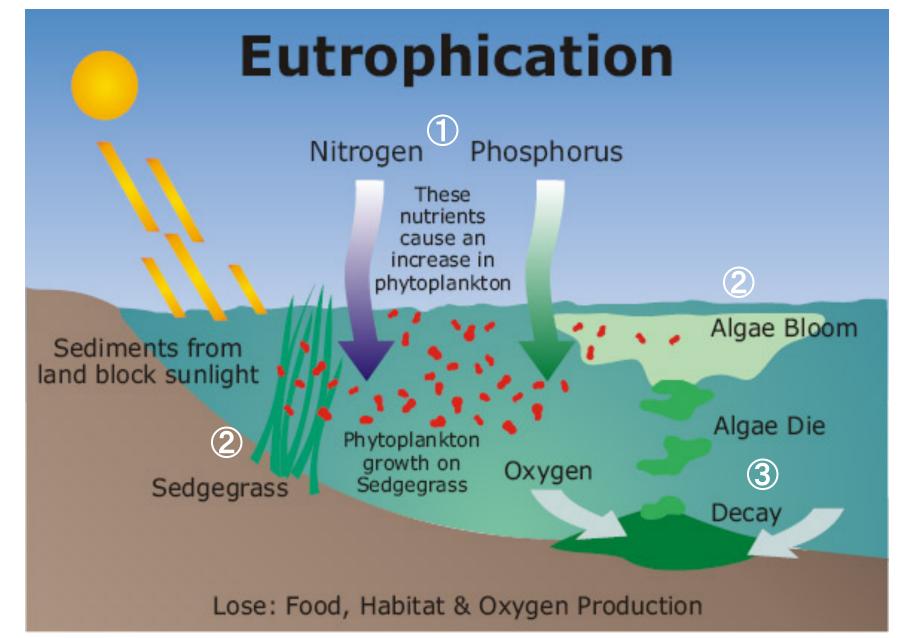
- N and P domestic & industrial w/ water
- Alkalinity (HCO₃⁻) natural Chlorides (Cl⁻) - natural Sulphur (S) – natural Metals (eg. Fe²⁺, Cu²⁺, Pb²⁺) – industrial w/water

ocw.utm.my

Effect of nutrients (N & P)

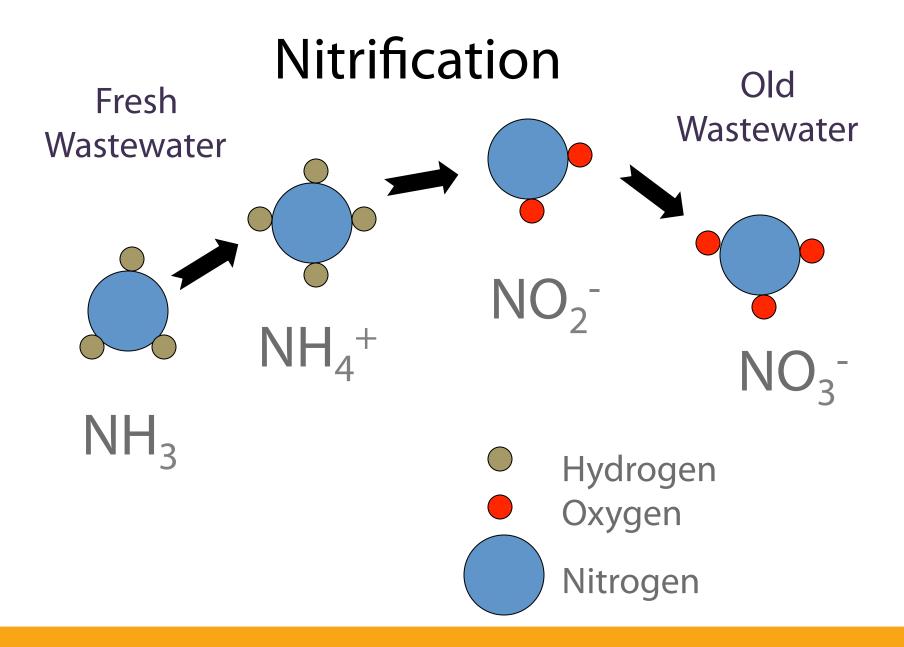
Eutrophication

Excessive algae breeding due to high N and P


environmentalgeography.wordpress.com

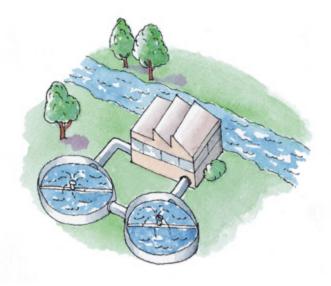
Eutrophication

environmentalgeography.wordpress.com



ocw.utm.my

Wastewater Quality Standards



Environmental Quality Act, 1974

Regulations in Environmental Quality (Sewage), 2009

Standards for sewage treatment plant effluent

Standard A and Standard B

UTM's STP

1°33'09.29" N

Pointer

Data SIO, NOAA, U.S. Navy, NGA, CEBCO © 2010 Mapit Image © 2011 DigitalGlobe 103°39'17.21" E elev 44 it Streaming ||||||||| 100%

7247 ft

-10

Eye alt

SAJ

Data SIO, NOAA, U.S. Navy, NBA, GEBCO © 2010 Mapit Image © 2011 DigitalGlobe E elev 104 ft Streaming ||||||||||100%

Pointer 1°33'38.35" N

103°39'26.03" E

Eye alt 16593 ft

Std. A – Upstream of IP Std. B – Downstream of IP

Inspiring Creative and Innovative Minds

ocw.utm.my

(i) Sistem pengolahan kumbahan baru					
Parameter	Unit	Standad			
		А	в		
(1)	(2)	(3)	(4)		
(a) Suhu	°C	40	40		
(b) Nilai pH	-	6.0-9.0	5.5-9.0		
(c) BOD, pada 20°C	mg/L	20	50		
(d) COD	mg/L	120	200		
(e) Pepejal Terampai	mg/L	50	100		
(f) Minyak dan Gris	mg/L	5.0	10.0		
(g) Nitrogen Ammonia (badan air yang	mg/L	5.0	5.0		
terkepung)	mg/L	10.0	20.0		
(h) Nitrogen Ammonia (sungai)	mg/L	20.0	50.0		
(i) Nitrogen Nitrat (sungai)	mg/L	10.0	10.0		
(j) Nitrogen Nitrat (badan air yang terkepung)	mg/L	5.0	10.0		
(k) Fosforus (badan air yang terkepung)			10.0		

(iii) Sistem pengolahan kumbahan yang ada (diluluskan selepas Januari 1999)

 Semua sistem pengolahan kumbahan yang telah diluluskan selepas Guidelines for Developers: Sewerage Treatment Vol. IV, 2nd edition dan dikuatkuasakan oleh Jabatan Perkhidmatan
Pembetungan, Kementerian Perumahan dan Kerajaan Tempatan, bermula Januari 1999 sehingga tarikh permulaan kuat kuasa Peraturan-Peraturan ini.

			Stan	Standard			
	Parameter	Unit	A	В			
(a)	BOD ₅ pada 20°C	mg/L	20	50			
(b)	COD	mg/L	120	200			
(c)	Pepejal Terampai	mg/L	50	100			
(d)	Minyak dan Gris	mg/L	20	20			
(e)	Nitrogen Ammonia	mg/L	50	50			

Nota: Standard A terpakai kepada pembuangan ke dalam mana-mana perairan pedalaman dalam kawasan tadahan yang disenaraikan dalam Jadual Ketiga, manakala Standard B terpakai kepada mana-mana perairan pedalaman yang lain atau perairan Malaysia.

(ii) Sistem pengolahan kumbahan sedia ada (diluluskan sebelum Januari 1999)

Kategori ini merujuk kepada semua sistem pengolahan kumbahan yang telah diluluskan sebelum Guidelines for Developers: Sewerage Treatment Vol. IV, 2nd edition dan dikuatkuasakan oleh Jabatan Perkhidmatan Pembetungan, Kementerian Perumahan dan Kerajaan Tempatan, bermula Januari 1999. Di bawah ialah syarat-syarat yang boleh diterima bagi pembuangan kumbahan mengikut jenis sistem pengolahan kumbahan:

						Jenis sistem pengolahan kumbahan							ıan
		Se	Tangki Septik Komunal		Tangki Imhoff		Lagun Pengudaraan		Kolam Oksidasi			Sistem Mekanikal	
-!-		Parameter (1)	Unit (2)	A (3)	B (4)	A (5)	B (6)	A (7)	B (8)	A (9)	B (10)	A (11)	B (12)
'	(a)	BOD₅ pada 20°C	mg/L	200	200	175	175	100	100	120	120	60	60
	(b)	COD	mg/L	Ξ	-	-	_	300	300	360	360	180	240
	(c)	Pepejal Terampai	mg/L	180	180	150	150	120	120	150	150	100	120
	(d)	Minyak dan Gris	mg/L	_	_	-	-	-	-	-	-	20	20
	(e)	Nitrogen Ammonia	mg/L	_	_	100	100	80	80	70	70	60	60